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LElTER TO THE EDITOR 

Universality of the critical behaviour of the weakly disordered 
Baxter model 

Vik S Dotsenko 
Landau Institute forlheoretical Physics, Academy of Sciences of the USSR, Moscow, USSR 

Received 4 December 1984 

Abstract. The two-point spin-spin correlation function of the weakly disordered Baxter 
model in the phase transition point is calculated. The corresponding critical exponent 
appears to be zero, i.e. the decay of the correlation function is slower than the power law: 
R-?.  Together with the previous result that the specific heat critical exponent of the weakly 
disordered Baxter model is also universal: (I = 0, it gives the complete set of universal 
critical exponents which describes the phase transition. The critical exponents of the weakly 
disordered Baxter model coincide with those of the weakly disordered k ing  model. 

In this letter the problem of phase transitions in weakly disordered (WD) systems will 
be considered. Due to intense theoretical and experimental studies it is now clear that 
a phase transition in WD spin systems is not ‘smeared’ but sharp, and is described by 
some universal critical exponents. 

Let the disorder be described by a small parameter A<< 1, which could be e.g. the 
concentration of impurity bonds or mean value of the spin-spin coupling fluctuations. 
Then near the critical temperature in the narrow temperature range ~ ( h )  - A”no, where 
a. is the specific heat exponent of a pure system, the critical behaviour is described 
by some universal critical exponents which could differ from those of the pure system 
(Harris and Lubensky 1974, Khmelnitskii 1975, Lubensky 1975). 

The so-called Harris criterion is that the crossover to the new critical behaviour is 
to be expected only if the critical exponent aO>O, then a new specific heat critical 
exponent simp should be negative (Grinstein and Luther 1976). Otherwise when a o < O  
WD is irrelevant for the critical behaviour (Harris 1974). 

Recently, in accordance with this general statement, Newman and Riedel (1982) 
computed theoretically, and Birgeneau et al (1983) confirmed experimentally, that for 
the WD three-dimensional Ising model simp= -0.09 (cf aO= t-0.11). 

Two-dimensional (ZD)  weakly disordered systems are of special interest. The critical 
behaviour of the WD Z D  Ising model (IM) was found exactly by Dotsenko and Dotsenko 
(1983). The critical exponents were shown to be 
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Although it is possible to study this system experimentally (see e.g. Als-Nielsen et 
a1 1976) the main difficulty is due to an extremely small crossover temperature range 
T ( A )  - exp (-constant/A) and correspondingly a large crossover spatial scale R(A) - 
T(A)- ' ,  Note that although a. = aimp = 0 the critical behaviour of the specific heat of 
the pure and WD 2~ IMS are different: Co(T)-ln(l/lTl), whereas ~ i ~ ~ ( ~ ) - I n l n ( l / l ~ l ) ,  
where T = 1 - T/ T,. 

Of course it is extremely difficult to check experimentally or by computer simulation 
the difference between In and In In, but perhaps it is easier to detect the difference in 
exponents e.g. vo = t and vimp = 0, or yo = $ and yimp = 2 .  

In a recent computer simulation by McMillan (1984) the value vimp=0.16 was 
obtained, which is noticeably lower than 770 = 0.25. It seems that the non-zero value 
of vimp is obtained due to the size of the system not being too large in comparison 
with the crossover scale. 

The 2~ IM, however, cannot answer the question of in which cases the WD is relevant 
for the critical behaviour since the specific heat exponent of this system 

The Baxter model (BM)  is an interesting object of these studies. This model, solved 
exactly by Baxter (1971), can be considered as two 2~ IMS coupled by four-spin 
interactions (see e.g. Baxter 1978). The strength of this coupling is described by some 
parameter g (the case g = O  corresponds to two independent IMS). The critical 
exponents of the BM are continuously dependent on g, and the specific heat exponent, 
which is proportional to g for small coupling ( g  << l ) ,  can be made both positive and 
negative. 

It was shown by Dotsenko and Dotsenko (1983), that the specific heat critical 
exponent of the WD BM aimp = 0 (cf a. = 4g/ T) irrespectively of g. The specific heat 
critical behaviour proved to be logarithmic. For g > 0, when the specific heat of the 
pure model is divergent (CO( 7) - the specific heat of the WD model is still 
divergent, but logarithmically, Cimp( T )  -In In( 1/1.1). On the other hand, for g < 0 
(C, (T) -  - 1 ~ 1 ~ ~ ~ ~ ' " "  is finite), the specific heat of the WD model does not remain the 
same as one would expect from the Harris criterion, but changes to a stronger cusp 
singularity: Cimp( 7) -[In In( l / \ ~ l ) ] - ' .  Therefore the Harris criterion is not valid for 
the BM. 

Recently Matthews-Morgan et a1 ( 1984) partially confirmed by computer simula- 
tion, the result mentioned above. For g > 0 the renormalisation group trajectories came 
into the IM fixed point g = 0. On the other hand for g < 0 the renormalisation yields 
some non-zero charge g,,,, Ig,,,l</gI. As was shown by Dotsenko and Feigelman 
(1981) and Dotsenko and Dotsenko (1983) for a special type of disorder this can 
actually be the case. But for the general type of disorder (spin-spin couplings fluctuate 
independently at each lattice bond) the fixed point should be g,,, = 0 for g < 0 as well, 
although the renormalisation trajectories could approach the fixed point more slowly. 

The aim of this letter is to show that the two-point spin-spin correlation function 
of the WD BM is 

= 0. 

(u(O)(+(R)) -exp[-(1/4~g)(ln In R ) * ] ,  ( 2 )  
that is, the critical exponent vimp=O. The result ( 2 )  coincides with that of the WD I M  

(Dotsenko and Dotsenko 1983). 
Since the scaling limit of the BM near the critical point is described by the 2~ 

fermion (Thirring) model with four-fermion interaction (Luther and Peshel 1975, Luther 
1976) the renormalisation group methods similar to those used for the WD I M  can also 
be applied to this case. We give here the schematic derivation of the result ( 2 ) .  
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In the representation of two coupled Ising lattices, the Baxter model is described 
by the following classical energy (see e.g. Baxter 1978): 

Ho= -c J x x , w x u x . - c  J , , P ~ P ~ -  J4 c, W P X ~ P ~ P ~ ~ .  (3) 
xx' YY' xx 

YY' 

Here w, = * 1 are Ising variables. The first two terms correspond to two IMS and the 
summation is performed over nearest neighbours on two different interpenetrating 
square lattices. The third term is responsible for the coupling of the two models. 

In the scaling limit near the critical point the homogeneous BM (J,,, = J y y ,  = J )  can 
equivalently be described by one complex (Dirac) fermion field or two real (Majorana) 
fermion fields (each one having two spinor components) CC, and x with the Euclidean 
action 

A =  d2X(-i$$$-if $ ~ - ~ m ~ ~ ~ - f ~ ~ ~ ~ + g o ( c C ; ~ ) ( f ~ ) )  (4) 5 
where &=cLTq5, f = x T T 5 ;  mo-7=( l -T /Tc) ;  g0=2J4 for J4<< 1 (see Luther and 
Peschel 1975). Quenched fluctuations of J,,,  and J y y ,  can be described, in the scaling 
limit, by quenched Gaussian fluctuations of and x masses in the action (4) (see 
Dotsenko and Dotsenko 1983) 

Here 

6mi( X )  amj( X )  = 4ho 6,j6( X - X'). 

The parameter Ao-  (7- ( J ) 2 ) / ( J ) 2  describes the quenched bond fluctuations and is 
assumed to be small. 

After averaging the free energy over the disorder, the effective theory is described 
by replicated action 

In the final result one should put N = 0. The theory ( 7 )  can be studied by renormalisa- 
tion group methods and in the course of renormalisation an additional vertex appears 

N 

x c (5"*")(fbXb) 
a,b=  1 

The renormalisation group equations for g, A and x are 

dg/d5 = -vi r)gA 

dA/d( = -(4/ r ) A 2 +  (4/r)gx 

d x l d 5  = (41 r)gA - (41 IT) x A 

(9) 
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where 5 is a renormalisation parameter. The asymptotic solutions (for 6 + a) of these 
equations are 

T In In 5 
g(5) -- I go1 + 

go 45 ln(4gol/ T I  ( - ln(4go6/ T I  ln(4go5/ T )  

(Dotsenko and Dotsenko 1984). 

transition point can be represented as 
In the scaling limit the spin-spin correlation function (a(O)a(R))  in the phase 

where tGe averaging is performed over the action (7) ,  (8) with mo = 0, and the N x N 
matrix T is 

/ 2  0 0 * . .  o \  

... ... ... ... ... T = i o  O O . ' .  O !  \ o  0 0 . . .  01 

(Dotsenko and Dotsenko 1983). In the course of renormalisation the term prpportional 
to (Xx) will appear in (11) and all diagonal components of the matrix T (12) will 
become non-zero. Therefore calculations should be performed for the expression 

where 
t :  0 0 * . .  0 
0 t; 0 

0 0  

The renormalisation group equations for f* can be easily derived 

dTzb/d&= -(2/r)A(TZb-(Tr f*) t3"b)*(2 /~)gTY Sob*x(Tr f ) S n b  (15) 
where Tr f+ = t :  + ( N  - 1)t; = t;' - 1; .  Together with solutions (lo),  equations (15) give 
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Expanding (13) we get the multiple loop series with renormalised matrix elements 
t t ( 6 )  and t:(t). In particular the second-order loop is given by (for N = 0) 

1 
- f loR dx, dx2( T:b(xl -x2) Ty(x2  - xI )  + Tfb(x1 - x2) Tb”(x2- xI ) )  

(27r)2(x1 - X2l2 

1 R 
= -: lo dxl dx2[( t\+)2 - t F ) * )  + ( t\-l2 - t i - ) ’ ) ]  

(27r)2(x1 -x2)2‘ 

From (16) and (17) one gets (.$-lnlxl -x21) 

It could be checked that the decreasing functions make higher-order loops convergent, 
so the main logarithmically divergent contribution for R +CO comes from the second- 
order loop only. So in the main order one finds 

which gives the result (2). The asymptotic behaviour (2) is valid beyond the crossover 
scale 

Note finally that the result vimp = 0 implies that all other critical exponents of the 
WD BM are the same as in the WD IM and are given by (1) .  Therefore we come to the 
conclusion that the inhomogeneity make the critical behaviour of Ising-like two- 
dimensional systems ‘more universal’ than that of the homogeneous ones. The urgent 
problem now is to investigate whether this universal critical behaviour (equations (1 ) )  
is valid for any other two-dimensional weakly disordered systems. 
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